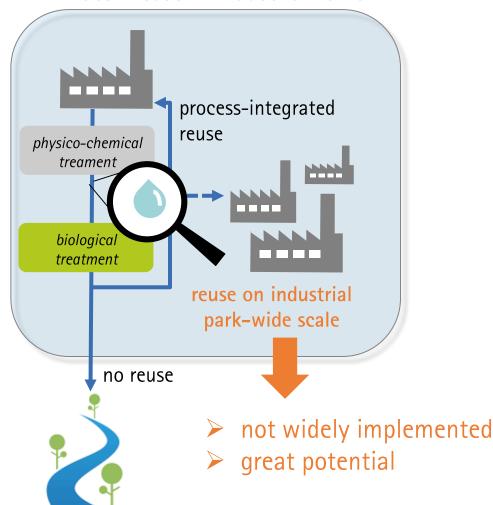


Systematic determination of the inert COD of industrial wastewaters in the context of COD fractionation

12th IWA International Conference on Water Reclamation & Reuse in Berlin 2019


Innovative Treatment Technologies & Applications Disruptive technologies for hard-to-treat wastewater

Introduction

Water Reuse in Industrial Parks

Challenges for biological treatment

- salt concentrations
- toxic substances
- high concentrations & fluctuations
- poor biodegradability

What is "poor" biodegradability?

- apparent poor biodegradability due to
 - > Toxins
 - Harsh conditions (pH, salt, etc.)
 - Nutrient deficiency
- very, very slow degradation rate
- concurrent substrates (diauxie)
- refractory nature of the substances (e.g. anthropogenic origin)

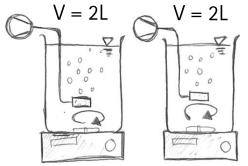
Relevance of biodegradability

(Poor) biodegradability...

- of industrial wastewaters is crucial for reuse implementation
- can lead to accumulation of non-biodegradables in the reuse cycle
- is especially important for the biological treatment process due to its advantages in terms of energy & costs
- assessment & definition are not harmonized and often timeconsuming
 - ➤ BOD₅/COD ratio
 - Zahn Wellens Test (DIN EN ISO 9888)
 - > OECD Biodegradability Tests (301, 302, 303, 310)

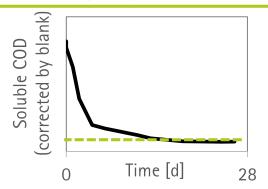
Comparison difficult!

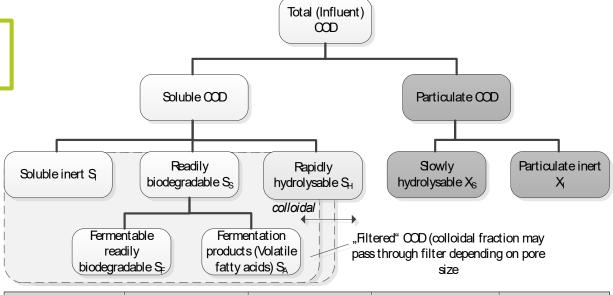
Objectives



- identify important industrial sectors with regard to poor biodegradability
- gather data on inert COD and DOC from literature and lab experiments
- identify influencing factors on the outcome of biodegradability tests
- Which measurement method is most suitable for...
 - designing (reuse) treatment concepts?
 - operation monitoring?

How can we determine COD fractions?


Experimental Set Up for (modified) Zahn Wellens Test



wastewater sample Blank test

- + inoculum
- + nutrients

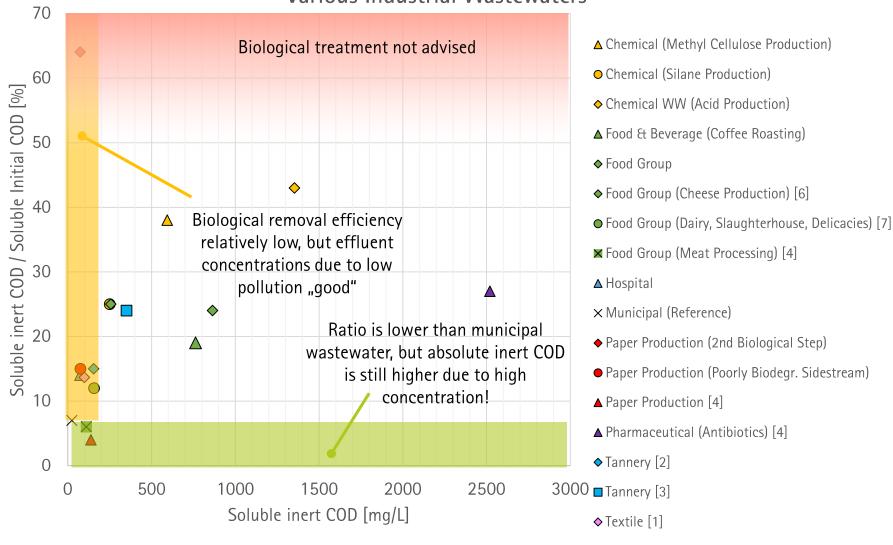
Resulting degradation curve

Soluble inert S	Soluble inert S, Readily biodegradable		Rapidly hydrolysable S _H		Slowly hydrolysable X _s	Particulate inert X	
		take Rate ma et al.,	S _{otal} – S ₁ - S ₈		X _{total} - X	Modified Zahn- Wellens Test with unfiltered samples (Orhon et al., 1993) CAS Reactor coupled with computational	
Effluent sCOD of a CAS Reactor in labor large-scale (DWA labor large-scale)		Mamais et					
Fermen	table S _F	VOICE	le fatty ds S _A omato-			model and calibration of sludge production through X) (Henze et al. 1987)	

Figure & Table: Influent COD fractionation model according to Henze et al. [8] and suggested methods for determination of the fractions

Industrial wastewater "screening"

Important sectors with poorly biodegradable wastewaters


- molasse-based industries, such as yeast production and alcohol production [9], [10], [11]
- paper and cellulose production containing lignins, cellulose and additives ([12], [13])
- textile industry containing polymers and carboxy methyl cellulose (sizing agents)
- chemical/ pharmaceutical industry with numerous compounds, such as methyl cellulose (thickening agent)
- in coal gasification wastewater 40 to 50% of the total COD originates from poorly biodegradable phenols [14]

Industrial wastewater "screening"

Industrial Wastewater Screening Results – Inert COD Fractions for Various Industrial Wastewaters

COD/TOC ratio as online-monitoring parameter

COD/TOC ratio is specific for each substance and wastewater

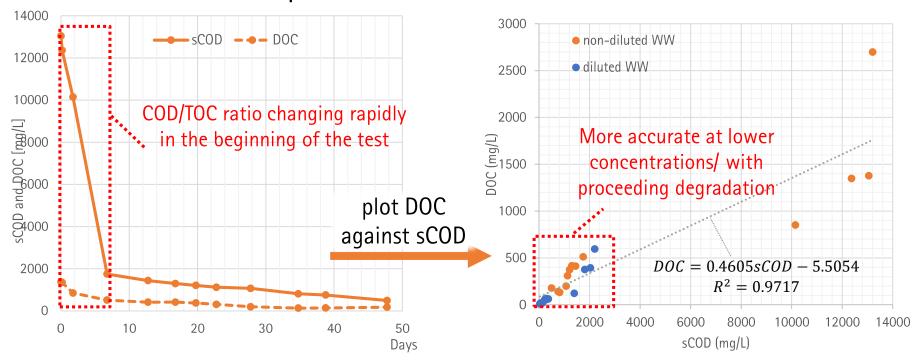


Figure 1: COD and DOC Degradation test (modified Zahn Wellens Test) of a industrial wastewater containing thickening agents (CMC and MC)

Figure 2: Regression analysis for COD and DOC of a industrial wastewater

change in the influent COD/TOC ratio is an indicator for changing biodegradability characteristics > monitoring parameter

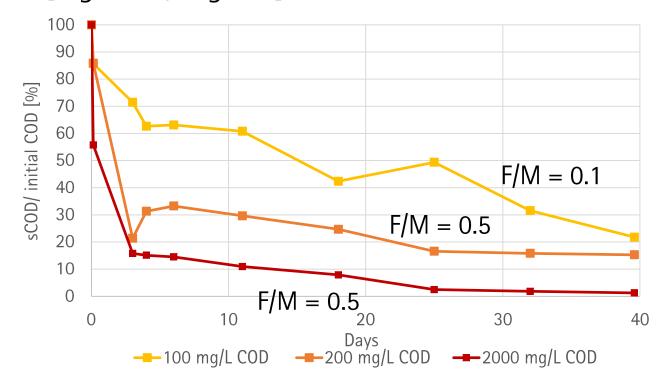
Zahn Wellens Test – variability and influencing factors

	Wastewater Sample	Dilution	F/M Ratio [mg COD/ mg TSS]	Initial Soluble COD [mg/L]	Inert Soluble COD [mg/L] (→ undiluted)	Inert Soluble COD [%]	
	Industrial Plant Stream 1 (CMC and MC)	1:1	0.5	13,200	492	3.7	1)
	Industrial Plant Stream 1 (CMC and MC)	1,6:10	0.5	2,200	32 → 192	1.45	1
	Industrial Plant Stream 2 (MC)	1:1	0.5	8,640	257.6	3.27	1)
	Industrial Plant Stream 2 (MC)	1:10	0.5	1,956	39.8 → 398	1.7	1
	Industrial Plant Stream 2 (MC)*	1:10	0.5	1,956	127.1 → 1271	6.89	2)

adapted sludge

Degradation results are influenced positively by...

- 1) Dilution
- Adaptation of the sludge
 - Convergence towards same value in the end?


*test ongoing (35 days)

Zahn Wellens Test – variability and influencing factors

test series on Tannic Acid and varying Food/Microorganism
Ratios [mg COD / mg TSS] and dilutions

 F/M ratio has influence on degradation rate but also on the outcome of the test

Conclusions

- Many industrial sectors, e.g. chemical, textile & yeast industry have significant poorly biodegradable fractions
 - assessment of inert fractions is necessary especially with regard to water reuse and an economic design of the reuse plant
- Provided industrial wastewater screening data can be used in the early planning stage and in benchmark analysis
- Need for harmonization of biodegradability tests
- Understanding the variances in the Zahn Wellens Test results increases the knowledge of the basic microbiological processes
 - Knowledge can be transferred into operational parameters for optimizing biological treatment processes

Thank you for your attention!

GEFÖRDERT VOM

Contact persons

Dipl.-Ing. Alicja Yogendran 🖂 yogendran@isah.uni-hannover.de

Dr.-Ing. Maike Beier 🖂 beier@isah.uni-hannover.de

Prof. Dr.-Ing. Stephan Köster 🖂 koester@isah.uni-hannover.de

www.isah.uni-hannover.de

Literature

- Orhon et al. (1992). Effect of residual COD on the biological treatability of textile wastewater.
- [2]Cogkör (1996). Respirometric evaluation of process kinetic and stoichiometry for aerobic systems.
- [3] Kabdash et al. (1994). Treatability of chromium tannery wastewaters
- [4] Germirli et al. (1991). Assessment of the initial inert soluble COD in industrial wastewaters.
- [6] Germirli et al. (1993). Effect of two-stage treatment on the biological treatability of strong industrial wastes
- [7] Hayet et al. (2016). Study of biodegradability for municipal and industrial Tunisian wastewater by respirometric technique and batch reactor test
- [8] Henze et al. (2000). Activated Sludge Models ASM1, ASM2, ASM2D, ASM3
- [9] Satyawali & Balakrishnan (2013). Wastewater treatment in molasses-based alcohol distilleries for COD and color removal: a review
- [10] Fall et al. (2012). COD fractionation and biological treatability of mixed industrial wastewaters
- [11] Robles-Gonzalez et al. (2012). Treatment of Mezcal Vinasses

Literature

Seyhi et al. (2013). Biodegradation of Bisphenol-A in aerobic membrane bioreactor studge

[13] Kindsigo & Kallas (2006). Degradation of lignins by wet oxidation: model water solutions

[14] Zhao & Liu (2016). State of the art of biological processes for coal gasification wastewater treatment.